Lecture 10

A pick overview of basic set theory. Sets A at B are called equinumecous it \exists bijection $A \leadsto B$. We donate this by $A \equiv B$. We write $A \subset B$ if \exists injection $f: A \subset B$ al we write $A \rightarrow B$ if the ne is a suggestion $f: A \rightarrow B$.

Examples, O Hilbert hotel. $\mathbb{N} \equiv \mathbb{N}^{+}$by $n \mapsto n+1$.

- $[0,1] \cong[0,1) \quad f:[0,1] \rightarrow[0,1)$
$(0,1) . \quad x \mapsto 1\left(\begin{array}{ll}\frac{1}{n+1} & x=\frac{1}{h} \\ x & \text { other mise }\end{array}\right.$
- $(a, b) \equiv(c, d) . \quad F:(a, b) \rightarrow(c, d)$

$$
x \mapsto \frac{d-c}{b-a}(x-a)+c \text {. }
$$

$0 \quad \mathbb{R} \equiv(a, b) \equiv(0,1) \quad t=(-1,1) \rightarrow \mathbb{R}$
(Aw) Verify, that Nisi is $x \rightarrow \frac{x}{1-|x|}$. a bijection.

Propositien. for setr $A, B, \quad A<B^{\not+*} \quad A C B B \rightarrow A$.
Proof. \Rightarrow. $A=A \propto B$, tix $a_{0} \in A$ \& defize $g: B \rightarrow A$ by $b \mapsto \begin{cases}a & \text { if } b=f(a) \text { for soe } a \in A\end{cases}$

$\Leftrightarrow \quad f: B \rightarrow A$. By the Axion if Choice, here is
 a tuaction $c: P(B) \backslash\{03 \rightarrow B$ $B^{\prime} \mapsto b \in B^{\prime}$
Defice $g: A \rightarrow B$ by

$$
a \mapsto c\left(f^{-1}(a)\right) \text {. }
$$

Det. A sed is called tivite if it n eqcinnumerous do a andical number (ahune ve haink of $n \in \mathbb{N}$ as the set $n:=\{0,1, \ldots, n-1)\}$. Otheswise, we say $h d$ it is infivite. $n<m$

Nef A sol is called Dedekind isfinite if it is equinumerous with its proper subset. Othemise we call it Dedekind timite.

Prop (Pifeahole Principle).
Finite sets are Dedekind fivite. In fant, if nesur then $n \leq m$, for all $n, n \in \mathbb{N}$.
Preof. Wo wo inchuction on m. If m is $O=\varnothing$, toon if $n \neq \varnothing$, then \nexists a finction $n \rightarrow m$, thas $n=\varnothing$. For the step, sappose the stateneat istere bor m al prove it for $m+1$. If $n \& f(\{0, \ldots, n-1\})$, then

$$
f: u \rightarrow m:=\{0, \ldots, m-1\}, 10
$$

ly incuction $n \leq m$.

We change the fuction f so tha $f(n-1)=m$. But then $f 1 \overbrace{50, \ldots, n-2\}}^{n-1}$ Cr $m:=\{0,1, \ldots, m-1\}$, so ay intuction, $n-1 \leq m$, lu-6 $n \leq m$ l.

Theoner. For a set A, TFAE:
(1) A is intirite.
(2) A is Dedekind intinite.
(3) $\mathbb{N} \leftrightarrow A$.
(4) $A \rightarrow \mathbb{N}$.

Proof. (2) $\Rightarrow(1)$. This just Pigeonhole Priciple.
$(1) \Rightarrow(3)$. By Axion of Choice HW
(3) $\Leftrightarrow(4)$. Arrandy dow.
$(3) \Rightarrow 22)$. Hilbert hatel.
HW Prove lireoth Wt $(2) \Rightarrow(3)$ without $A C$.
Def. A sot A is called conatable if $A \equiv \mathbb{N}$ or A is finite.

Prop. For a set A, the folloming ane eqcivalest:
(1) A is ctbl (= conutable).
(2) $A \subset \mathbb{N}$.
(3) $\mathbb{N} \rightarrow A$.
\Uparrow no $A C$ is necled
Prof. (1) $\Rightarrow(2)$. Trivial.
(2) $\Leftrightarrow(3)$. Alceach done, uses $A C$.
(2) \Rightarrow (1). Withait loss of yen., assure $A \leq \mathbb{N}$. Sappose A is infinite al we baild $f: \mathbb{N} \rightarrow A$ recursively as Allous: Let $n \in \mathbb{N}$ and suppose $\left.\left.f\right|_{n:=} 0, \ldots, n-1\right\}$ is

A
alreachy defined al define $f(n):=$ leasst clevent in $A \backslash\{f(0), f(1), \cdots, f(n-1)\}$.
This is easibs a bijection.
Exmples. O

$$
\begin{aligned}
& \mathbb{N} \times \mathbb{N} \\
& \mathbb{N} \cong \mathbb{N}^{2} \cong \\
& \mathbb{N}^{2} \times \mathbb{N}=\mathbb{N}^{3} \\
& \cong \mathbb{N}^{K} .
\end{aligned}
$$

○ \mathbb{Z} is chbl

$$
(n, m) \leftrightarrow \frac{n}{m}
$$

It A is ctbl then so is $A^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}} A^{n}$. HIN Prove witheat $A C$.

Prop (AC). A ctll union of cthol sete is cthl, i.e. if A is a cthl set whose each eleourt is \mid |bl, then $V A:=\bigcup_{A \in A} A$ is also tbl.

Poof. We use the $\mathbb{N} \rightarrow$ definition of itbility,
lel $f=\mathbb{N} \rightarrow$ er A be a surjection, i.e. $A=\left(A_{n}\right)_{n \in \mathbb{N}}$. We keom K_{1} for each n \exists a surjection $\mathbb{N} \leftrightarrow A_{n}$. We use $A C$ to get a fuacfion $F: \mathbb{N} \rightarrow\left(\begin{array}{l}\left.V A_{n}\right)^{N}\end{array}\right.$ $n \rightarrow F_{n}$, here E_{n} is a surjection $N \rightarrow A_{n}$. Dhus, we can build a surjection $\mathbb{N} \equiv \mathbb{N} \times \mathbb{N} \rightarrow \bigcup_{n} A_{n}$ by $(n, n) \mapsto F_{n}(n)$.

HW Prve he the sel at algebcaic numbers is ctbl. A ceal u-ber r is called algebsaic it it is a coot of a polguomial with cational coefficients, e.g. $\sqrt{2}$ is algebraic being a noot of $x^{2}-2$. All rational imbere are algelraic bene $q \in \mathbb{C}$ is a noot of $x-y$.

